


The rules for multiplying real numbers are related to the properties of real numbers and the definitions o² operations.

(3)(5) 5+5+5	(3)(-5) (-5)+(-5)+(-5)	(-3)(5) (-3)+(-3)+(-3)+(-3)	(-3)(-5) (-1)(3)(-1)(5)			
15	15	- 15	[<-1X-1][(3X5)] 1 · 15			
			15			
KEY CONCEPT: MULTIPLYING REAL NUMBERS						
The product of two real numbers with <u>different signs</u> is <i>negative</i> .						
Examp	<i>les:</i> $2(-3) = -6$	-2(3) = -6				
The product of two real numbers with the <u>same sign</u> is <i>positive</i> .						
Examp	2(3) = 6	(-2)(-3) = 6				

PROBLEM 1: MULTIPLYING REAL NUMBERS

What is each product?

Notice that $(-3)^2$ in part (d) of Problem 1. Recall from Lesson 1-3 that *a* is a square root of *b* if $a^2=b$. So -3 is a square root of 9. A negative square root is represented by $-\sqrt{-3}$. Every positive real number has a positive and a negative square root. The symbol \pm in front of the radical indicates both square roots.

PROBLEM 2: SIMPLIFYING SQUARE ROOT EXPRESSIONS

What is the simplified form of each expression?

a) $-\sqrt{25}$	b). $\pm \sqrt{\frac{4}{49}}$ $\pm \frac{2}{7}$ $= \frac{2}{7} \text{ and } -\frac{2}{7}$	c). √81	d). $\sqrt{-16}$ NOT A REAL NUMBER.
e) $\sqrt{64}$	f). $\pm\sqrt{4}$	g)√121	h). $\pm \sqrt{\frac{1}{36}}$
8	±2	- 11	$\frac{1}{6}$

KEY CONCEPT: DIVIDING REAL NUMBERS The quotient of two real numbers with <u>different signs</u> is <i>negative</i> .					
Examples:	$-20 \div 5 = -4$	$20 \div (-5) = -4$			
The quotient of two real numbers with the <u>same sign</u> is <i>positive</i> .					
Examples:	$20 \div 5 = 4$	$-20 \div (-5) = 4$			

PROBLEM 3: DIVIDING REAL NUMBERS

a) A sky diver's elevation changes by -3600 ft in 4 min after the parachute opens. What is the average change in the sky diver's elevation each minute? 4 T 15

$$\frac{-3600 \text{ ft}}{+ 4 \text{ min}} = -900 \text{ ft} + \frac{906}{-3600}$$

$$\frac{906}{-3600}$$

$$\frac{-3600}{-3600}$$

$$\frac{1 \text{ he elevation is}}{4 \text{ decreasing 900}}$$

$$\frac{1 \text{ feet per minute}}{6000}$$

b) You make five withdrawals of equal amounts from your bank account. The total amount you withdraw is \$520. What is the change in your account balance each time you make a withdrawal?

$$\frac{-\$520}{+5 \text{ withdrawals}} = -\frac{104}{\text{ withdrawel}} = 51520$$

$$\frac{104}{-51520}$$

$$\frac{51520}{-20}$$

$$\frac{1}{220}$$

$$\frac{1}{220}$$

$$\frac{1}{220}$$
For every nonzero real number *a*, there is a multiplicative inverse $\frac{1}{a}$ such that $a\left(\frac{1}{a}\right) = 1$

900

10.1

Example: The multiplicative inverse of -4 is $-\frac{1}{4}$ because $-4\left(-\frac{1}{4}\right) = 1$.

The <u>reciprocal</u> of a nonzero real number of the form $\frac{a}{b}$ is $\frac{b}{a}$. The product of a number and its reciprocal is 1, so the reciprocal of a number is its multiplicative inverse. This allows are rule for dividing fractions.

KEY CONCEPT: DIVIDING FRACTIONS

$$\frac{a}{b} \div \frac{c}{d} = \frac{a}{b} \cdot \frac{d}{c}$$

When dividing with fractions, rewrite the problem as the multiplication by the reciprocal of the denominator.

PROBLEM 4: DIVIDING FRACTIONS

Simplify.

a)
$$\frac{-\frac{3}{4}}{-\frac{2}{3}}$$
 b) $\frac{\frac{4}{5}}{-\frac{5}{3}}$ c) $-7 \div \frac{7}{3}$ d) $\frac{3}{8} \div \frac{3}{4}$
 $-\frac{3}{4} \div \left(-\frac{2}{3}\right)$ $\frac{4}{5} \div \left(-\frac{5}{3}\right)$ $\frac{7}{7}$ $-\frac{1}{7} \div \frac{3}{8} \Rightarrow -\frac{1}{3} \Rightarrow \frac{1}{8} \div \frac{1}{8} \Rightarrow \frac{3}{24}$
 $-\frac{3}{4} \div \left(-\frac{3}{2}\right)$ $\frac{4}{5} \div \left(-\frac{5}{3}\right)$ $\frac{7}{7}$ $-\frac{1}{7} \div \frac{3}{8} \Rightarrow -\frac{1}{3} \Rightarrow \frac{1}{8} \div \frac{1}{8} \Rightarrow \frac{3}{24}$
 $-\frac{1}{5} \div \left(-\frac{3}{5}\right)$ $-\frac{21}{7} \div \frac{3}{8} \Rightarrow -\frac{1}{1} \Rightarrow \frac{3}{24}$
 $\frac{4}{8} \div \left(-\frac{3}{5}\right)$ $-\frac{21}{7} \div \frac{3}{7} \Rightarrow -\frac{1}{3} \Rightarrow \frac{1}{8} \div \frac{1}{8} \Rightarrow \frac{3}{24}$
 $\frac{4}{9} \div \left(-\frac{3}{25}\right)$ $-\frac{21}{7} \div \frac{3}{7} \Rightarrow -\frac{1}{7} \div \frac{3}{8} \div \frac{1}{8} \Rightarrow \frac{3}{24}$
 $e) \frac{\frac{3}{4}}{-\frac{1}{4}}$ f) $20 \div \frac{1}{4}$ g) $\frac{2}{7} \div \left(-\frac{20}{21}\right)$
 $\frac{2}{3} \div \left(-\frac{1}{4}\right)$ $\frac{20}{7} \div \frac{4}{1}$ $\frac{1}{7} \div \frac{80}{7}$ $-\frac{3}{10}$